Gut chemosensing: interactions between gut endocrine cells and visceral afferents.
نویسنده
چکیده
Chemosensing in the gastrointestinal tract is less well understood than many aspects of gut mechanosensitivity; however, it is important in the overall function of the GI tract and indeed the organism as a whole. Chemosensing in the gut represents a complex interplay between the function of enteroendocrine (EEC) cells and visceral (primarily vagal) afferent neurons. In this brief review, I will concentrate on a new data on endocrine cells in chemosensing in the GI tract, in particular on new findings on glucose-sensing by gut EEC cells and the importance of incretin peptides and vagal afferents in glucose homeostasis, on the role of G protein coupled receptors in gut chemosensing, and on the possibility that gut endocrine cells may be involved in the detection of a luminal constituent other than nutrients, the microbiota. The role of vagal afferent pathways as a downstream target of EEC cell products will be considered and, in particular, exciting new data on the plasticity of the vagal afferent pathway with respect to expression of receptors for GI hormones and how this may play a role in energy homeostasis will also be discussed.
منابع مشابه
Gut chemosensing: implications for disease pathogenesis
The ability of humans to sense chemical signals in ingested substances is implicit in the ability to detect the five basic tastes; sweet, sour, bitter, salty, and umami. Of these, sweet, bitter, and umami tastes are detected by lingual G-protein-coupled receptors (GPCRs). Recently, these receptors were also localized to the gut mucosa. In this review, we will emphasize recent advances in the un...
متن کاملGut chemosensing: implications for disease pathogenesis [version 1; referees: 2 approved]
The ability of humans to sense chemical signals in ingested substances is implicit in the ability to detect the five basic tastes; sweet, sour, bitter, salty, and umami. Of these, sweet, bitter, and umami tastes are detected by lingual G-protein-coupled receptors (GPCRs). Recently, these receptors were also localized to the gut mucosa. In this review, we will emphasize recent advances in the un...
متن کاملWhat activates visceral afferents?
Vagal and spinal afferents represent the information superhighways that convey sensory information from the gut to the central nervous system. These afferents are sensitive to both mechanical and chemical stimuli. Vagal afferents terminate in the muscle layers and in the mucosa. Muscle afferents are activated at physiological levels of distension and during peristalsis. In contrast, spinal affe...
متن کاملVisceral perception: inflammatory and non-inflammatory mediators.
Visceral hypersensitivity is currently the most widely accepted mechanism responsible for abdominal pain. Inflammatory mediators are known to sensitise primary afferents and to recruit silent nociceptors. Recent evidence suggests that non-inflammatory mediators also have the potential to trigger visceral pain. This sequence of events may constitute part of an alerting system which prompts the c...
متن کاملHow many kinds of visceral afferents?
Most afferent signals from the viscera do not give rise to conscious experience and yet they participate in the complex neural control of visceral functions. Surprisingly little information is available on the origin, morphology, and receptor functional characteristics of the nerve endings of most primary afferent neurones to the digestive tract. This review deals with the morphological nature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Autonomic neuroscience : basic & clinical
دوره 153 1-2 شماره
صفحات -
تاریخ انتشار 2010